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SDIMMARY

The directional and frequency diffusion of a plane monochromatic

sound wave in statistically homogeneous, isotropic, and stationary tur-

bulence is analyzed theoretically. The treatment is based on the diffu-

sion equation for the energy density of sound waves, using the scattering

cross section derived by Kraichnan for the type of turbulence assumed
here.

A fo_n for the frequency-wave number spectrum of the turbulence is

adopted which contains the pertinent parameters of the flow and is

adapted to ease of calculation. A new approach to the evaluation of the

characteristic period of the flow is suggested. This spectrum is then

related to the scattering cross section.

Finally, a diffusion equation is derived as a small-angle scattering

approximation to the rigorous transport equation. The rate of spread of

the incident wave in frequency and direction is calculated, as well as
the power spectrum and autocorrelation for the wave.

INTRODUCTION

The fluctuation of acoustic signals in media of randomly varying

index of refraction has been considered by several investigators from

nearly as many points of view. On the basis of geometrical or ray acous-

tics, Bergmann (ref. i) and Obukhov (ref. 2) have evaluated the fluctua-

tions in phase and amplitude of a spherical acoustic wave emanating from

a point source. Skudrzyk (ref. 3) has also estimated these quantities

and obtained the probability distribution of the signal from a geometri-

cal scattering point of view and has tabulated his results. Mintzer

(refs. 4, 5, and 6), using single and double scattering formulations,

also calculated similar quantities. One of the beauties of Obukhov's

approach is that he was able to obtain both Mintzer's and Bergmann's

results as limiting forms of a single derivation.
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The present work proposes to solve somewhatthe sameproblem from
a multiple scattering point of view by formul_ting the transport equa-
tion for the acoustic energy density spectrum in turbulent flow. The
diffusion takes place both in frequency and d_rection, since the flow
varies in time as well as space. The directional diffusion of a sound
wave has been previously considered by Lighth_ll (ref. 7), who proceeded
from a diffusion equation which appears to have been inspired by random
walk considerations.

The present investigation was conducted at the Acoustics Laboratory
of the Massachusetts Institute of Technology _,nder the sponsorship and
with the financial assistance of the National Advisory Committee for
Aeronautics.
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A,B

b

c

d(®)

E

E

S

I

Io

Jo< }

K

parameters for hypothetical spectrunl

rms frequency variation

wave in undisturbed medium

volume element in k space

volume element in x space

element of solid angle

wave number and spatial density of _coustic energy

acoustic energy

acoustic intensity

wave number and spatial density of _,coustic intensity

intensity of unscattered sound wave

Bessel's function of zero order

scattering vector and turbulent waw _ number

wave vector
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_p

k o

L

M

m

e(n,m)

r

t

U

V

W(K)

w(K,f_)

z

c_

r(x)

7

A

5(x)

wave number where W(K) has its maximum

correlation length

Mach number of turbulent fluctuations

summation index

unit vectors in direction of k and k'_ respectively

Legendre polynomial

power spectrum of scattered wave

total scattering cross section per unit volume

frequency variable

time

space-time transform of

turbulent velocity field

volume of scattering region

isotropic spectrum for time-independent turbulence

isotropic spectrum for time-dependent turbulence

time transform of acoustic condensation

position vector

distance over which sound has propagated in atmosphere

inverse of ko

scale factor in W(K)

gamma function

normalizing constant

relative frequency shift from _o

Dirac delta function

dissipation rate for turbulent energy



4

q

8

¥

P

Po

P
1

2

T

¢

_ij

,(T)

C13o

parameter in hypothetical spectrum

distance variable

total angle of deviation from original direction

transform variable

characteristic frequency of turbulence

kinematic viscosity

cos 8

relative frequency shift from

ambient density of atmosphere

branch points of integrand

delay time

differential scattering cross section

vector from _' to x

scattering angle

spectral function for homogeneous t_rbulence

azimuthal angle

autocorrelation function for acoustic signal

frequency of turbulence

frequency associated with wave number

frequency of unperturbed sound wave

Superscripts:

( )' pertaining to scattered quantity

(--) vector
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Subscripts :

ensemble average

averaged over differential cross section

p propagation

TRANSPORT EQUATION

The spectral energy density E[x,_) of a sound field is defined in

such a manner that in the volume dx and in the range of wave numbers

dk, (i.e., the wave number k falls in the range k, k + d_) the acous-

tic energy is

(1)

A beam of intensity d_ and the wave number in dk has energy scattered

into beams with wave numbers in d_' at a rate given by IdJl_(_/k')dk'.

In the plane waves being considered, the intensity is related to the

energy density by

dj = c _ E(_,k)dx dk _ Y(_,k)_ dk (2)
k

where _(x,k) is an "intensity spectral density" and c is the wave

speed in the undisturbed medium. It is assumed that the rate of change

of energy in time is totally accounted for by scattering and propagation,

and such effects as viscous, thermal, and relaxation loss mechanisms are

neglected.

The energy loss rate due to propagation alone is given by

In the volume

J p

dx-, the conversion of k waves to k'

(3)

waves results in

c_t j___, , _(_I_')_'
(4)



and the conversion of _' waves to k wave_ gives

L-_E(_'_)]__,f_,-_ =]_, T(_,_,)i_(_,/_)d_, (_)

The integration in equation (4) may be perfozmed immediately if the total
cross section is introduced

Q(K) = o(_/_,)_E, (6)
k'

If the acoustic source has come into statistical equilibrium with the

field_ then the total rate of change of energy vanishes. Thus_ adding

equations (3), (4), and (5) and setting the lesult equal to zero gives

the transport equation

W
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div Y = -cE(_,_)+ cI_, d_'o(_'/E)E(i,_')

Now it is necessary to evaluate o(k/_') for turbulent scattering.

Scattering Cross Section o(k/k')

The expression for the time-dependent cr_ss section used here is

essentially that derived by Kraichnan (ref. _). Let the directions of

and k' be defined by the unit vectors _ and n', respectively.

The turbulent velocity field is described by a Fourier transform,

u(Z,_): _ d_ dte-i(_" t)
DO

(7)

Referring to appendix A and reference 8, the reader will see that the

appropriate form for a is

o(_./_,)_ _m2(_7" _,)2<itnl2>av

(8)

where U n is U • n and m is the frequency of the incident sound.

ensemble averaged factor in equation (9) must be related to the one-

dimensional spatial spectrum for isotropic turbulence. This spectrum,

(9)

The



as described by Batchelor (ref. 9), is denoted by W(K). The kinetic
energy and the rate of energy dissipation per unit mass are (ref. 9)

_0 °°

! (u2} _- w(K) (lo)
2

and

OO

(Zl)

For time-dependent turbulence, the spectrum w(K,_) is introduced which

must satisfy

OO

W(K) =SO w(K,_)d_
(12)

The mean flow is assumed to vanish and the autocorrelation at a point is
assumed of the form

<Ul(t)ul(t + T)>av = <u2(t)u2(t + ")>av

= 13 \__2"/)av e-Zl"r I (13)

with a frequency spectrum

_(X 2 + n 2)

If it is assumed that the frequency and wave number spectra may be sepa-

rated_ the equation can immediately be written

w(K,_) = W(K) Z (14)

_(_,2+ ,0,2)

where equations (12) and (13) were used. A convenient form of W to

choose for the integrations to be performed is

- W(K) = _K4e -4<_ (15)



where i/_ = ko is the wave numberfor the naximumof the spectrum;
that is, it is the wave numberof the energy-bearing eddies. This spec-
trum is chosen since it has the known K4 behavior at small wavenumbers
(ref. 9) with the energy-bearing maximumand allows analytic evaluation
of the integrals t_ follow. Using equation (i0),

45 4<u2> (16)
_- 48

Which ties the parameters _ and _ to important quantities in the
description of the turbulent field.

It is shown in appendix B that <Unl2 > may be related to the spec-

trum equation (14) by the relation

2)av- w(K,.)
8._K 2

(17)

where _ is the angle between incident and scattered wave vectors.

The characteristic frequency of the turbulence by equations (13)

and (14) is h. This may be approximately eCaluated from parameters of

the flow by setting

x (18)
L

where u = _[_/\\u2/ and L is the correlatiol length of the turbulence

(mean eddy size). Lighthill (ref. 7) gives I formula for this length

which is used in this investigation. It is

L - 3_: F °° W(K) clK- 3_ (19)

2<u2>Uo K 4

for the spectrum equation (15).

There is another possible method for th_ evaluation of h. In an

equilibrium turbulent field there is a balance between th_ randomly
created vorticity and its dissipation as viscous loss. This is reminis-

cent of the equilibrium state of a harmonic oscillator (with damping)

when excited by random noise. For the osciLLator, one obtains a correla-

tion function _e -hlvl where h is given by the ratio of the energy

lost per second to twice the average energy stored. Making this analo-

gous to the turbulence problem,
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_ E (20)

In terms of the spectrum equation (15), this is

_ 15v (22)
8_ 2

which is lower by a factor of i0 or so than experimental results which

support the value given by equation (18). It is believed that the fail-

ure of equation (21) is due primarily to equation (15) and not to the

idea expressed by equation (20). The assumed spectrum cuts off too

sharply for large wave numbers and hence gives too low a value for E.

Any spectrum which gives the K -5/3 range predicted by equilibrium

theory, however, appears to be too complex to integrate in expressions

which arise later in the paper. Hence, equation (15) will be used recog-

nizing its limitations at large wave numbers.

A possible spectrum is W _ K4(I+\ AK-17/3k + BK-II/_) k,- where

< 0 but arbitrary. This spectrum contains the necessary K4, K -5/3,

and K -7 ranges, but integrations involving this factor are seen to be

rather formidable.

DERIVATION OF DIFFUSION EQUATION

Referring now to equations (9), (14), (15), and (17) and to

reference 8_

-4_K

d(k/k') - _2_# K2 e (_ • n')2cos2(_/2) (22)

4c 3 _2 + _2

where K = IKI = It_ .- :k'l and _ = leo -d_' I . The frequency shift is

and the magnitude of the scattering vector K. It is seen that

(23)

if the change in frequency upon scattering is not too great.

An attempt was made to simplify equation (7) by some appropriate

assumptions. If the incident acoustic wavelength is smaller than the

eddy size, then the scattering will be strongly forward. Also, the

period of the sound wave is usually much less than the period of the
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turbulence (_ >> 2). Thus, _(_/k') is nonzero for only small values
of _ - k', and E(x,k') can be expandedarould (x,_) in a Taylor's
series.

Since the diffusion of a plane wave of frequency m o with a wave

vector parallel to the z-axis is to be conside_ed_ it is expected that

the function E will depend only on z_ e, ard A - - _o where e
_O

is the polar angle from the z-axis. If _ =ccs e, then

' = E(z,_,a) + {' { _ ${(z,{ ,_' o - -- + _' --

+ _1 _,- _)_2 _2E +ld _2 -2 <J(A'-\ A)_O"\2_2E. _£2

+ _' _)(a' -a))a _-_ + . (24)
i

fl

where _ '/_' o uk'

equation (7), gives

Putting equation (24) into

_z = _' - _ o_- + a' -a _+_ _l , -_ _$2_

+ 12 _a'- A))_ _2E+I_A2 ((_'- a)(_' - _)) _£_2E_ +
• O"

(25)
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This is the diffusion equation which will be used. With a knowledge

of _, it remains to calculate the unknown coefficients.

If p = A' - A, using the law of cosines

K = [k2p 2 + 4k2sin2(_/2) - 4k2p si__2(_/2)] 1/2 (26)

Now examine the relative magnitudes of these terms. Consider the ratio

kp/2k sin(_/2). Now kp _ h/e = %M/u, where % is a characteristic fre-

quency of the turbulence and M is the Maeh n_nber of the turbulent

fluctuations. The factor 2k sin(_/2) _ i/_, w_ere Z is a character-

istic length for the flow. Then

kp _ ZM _ M << L (27)
2k sin(_/2) u--_
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substituting for equation (18). Also, p _ h/coo << i. This means
equation (26) can be expandedas

( i I ) (28)

and x = sin(_/2). Using equation (2$) in (22) gives

°(f_/_') _ _4x2(lc - x2)(l _ 2x2)2(_2+ co%2)-lexp e_ - _p + _ }]

(29)

COEFFICIENTS IN DIFFUSION EQUATION

To calculate the "averaged" coefficients in equation (25) consid-

ering <_' - _ a

(_'- _7o=fd_'o(K/_')(_' - _)

The evaluation of this integral using equation (29) is carried out in

appendix C. Since _ is independent of _, it is possible to calculate

this average with the simplified spectrum equation (15). The result is

shown to be

where M 2 m (u2)/c 2.

The calculation of <(_' - _)2>d is performed in appendix D, and again

the simpler spectrum equation (15) can be utilized. This simplification

occurs because w(K,_) is chosen to be a product of 2 factors, one inde-

pendent of K and the other, of _. (It is probable that the actual

isotropic spectrum which would be determined from the equations of motion

would not factor in this manner, since it is seen from equation (18)

that the periods and eddy sizes are related.) The result here is

(31)
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The evaluation of /P_ is not so straightforward as in the pre-

vious cases. However, there is no physical b_sis for assuming that

there will be any change of frequency of the _ave. In appendix E, it is

shown that although the expression (22) does Iredict some slight average

frequency shift, this shift will be very smal], and can be neglected if

compared to its rms value. Accordingly, let

(_)_= 0 (32)

which also premits the assumption that (0(_' - _)j_o = 0.

The evaluation of (p 2)o can be carried forth _ithout difficulty,

and in appendix F it is found to be

-_2r(9/2) _ M2 (33)

W
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Notice that according to this result the ms frequency deviation should

be proportional to _i/2 instead of _ as o_e might suppose.
!

SOLUTION OF DIFFUSION EQUJ_TION

By putting the calculated coefficients into the diffusion equa-

tion (25), after making the proper definition_, one obtains

aE aE  2) 2E1a2 ,
2 a_2 2 8r 2

(3_)

_2 _r(9/2)where _ - 5_M2z, r = --,Aand -

52_ 7 2 15_c

This equation must be solved with the conditi(_n that there is a mono-

chromatic plane wave at z = O. The energy d_nsity at z = 0 will be

of the form E = B_(I - _)B(r), where B is _.o be determined. Then,

from equation (i), the energy density becomes

OO

_ (z = 0)=fE(O,_;)dk = 2_Bko3f0 d_(:_- _)f-oo d(rT)b(r)

or, Io c-I = _ko37B _ where Io is the intens:Lty at Z = 0. Then,
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Io
E(0,_) _(r)_(1- _) (39)

ko57c

Equation (34) can be solved rather easily if the distances z are suciL

that the initial wave has spread only slightly in direction. In this

region then, let the term on the left-hand s_de of eq_mtion (34) red1_ce

to 0E/_. The solution in then iI_lediately

E(_,_): d_ Fmi__)%_(_)e
OO

Ii1=0

The boundary condition equation (]5) defines Am(_ ) to be

_n(_) - I° (_i + I) (37)

4_2ko37C

Finally then,

E(_,r) - I° (_)i/2e-A2/2_ _,(2m + l)Pm({)e -m(m+l)_/2 (}8)
4_ 2k o }7c

In=O

which reduces to Lighthill's result (ref. 7) for time-independent scat-

tering. The separation of the frequency and angular diffusion processes

into factors in equation (38) is_ of course, a result of the form of the

turbulent spectrum and the vanishing of the term @(_' - {), .

This equation may be made more transparent by considering the d_f-

fusion to have progressed only slightly. Then the angular deviations

are small and it is possible to substitute

-- + (3p)

for which the general solution is

OO

E(x,k) :IO _d_Jo(f38) e

i p2 ,_ i_r 1 2

-_ ] dKe - _ _A(_,_)
--OO

(4o)
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where A(_,_) is evaluated b.y reqT_iring that E(x,k)

plane monochromatic wave at z = 0 of intensity I o.

this gives

correspond to a

The result of

A ]'0 °°: _ J3d_3Jo (_3e) e

12

-_ _ /'_ i_r-_2_/2
' O0

and using the formula for the Fourier transform of a nozmlal frequency

function and Weber's first exponential formula for the Besse] function

integral, gives

ko_Te(2_1]_)I/2 exp 21]

a normal distribution in both frequency and direction with rms values

= _q. Thus, the rms deviation in angle varies with the Mach number of

the fl_ctuations and with the square root of both the mean eddy size

and tLe distance z. In addition to these, the relative frequency

deviation also depends on the square root of the eddy frequency but is

h_dependent of t_,e eddy size.

If the wave m_nber part of the probability distribution equation (42)

is now interpreted as the power spectr_m of a wave, then it is possible

to ca!c_late the autocorrelation function of the signal at any position

z. The mo_._alized autocorrelation function is ti_en

fj= Z(x, )cos
O

and for the above spectrt_n equation (42),

9(_) = cos _o T exp[-b2(_oT) 2]

(43)

(44)

where b 2 : v2h : M2_2hF(9/2)z/192_e, and t_e assumed relative "spread"

of the spectrum is slight. At z = O, there is the cosine correlation

function of a pure sine wave. For distances z, there is a loss in

correlation for large values of delay T.
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CONCLUDING Ri,_,_RKS

It has been shown how the nature of a plane monochromatic sound

wave may be changed by passage througi_ a turbulent atmosphere. Perhaps

it is well to pause and review the ass1_ptions and tken see i_ow useful

the results may be.

The Lighthill and Kraichnan scattering formulae are valid wl_en the

Mach number of the turbulence is low (<< I). In addition, it will gen-

erally be true that the sound particle velocity wil! l e small compared

with the turbulent fluctuation velocities. This means that the sound-

turbulence interaction is assumed larger than the nonlinear acoustic

effects. The sound generated by atmospheric turbulence usually will

have frequencies much lower than those which are of interest in prcpa-

gating through the atmosphere. The interaction or scattering phenomenon

may then be considered to predominate in the audible frequency range.

In evaluating the integrals in the appendices (C, D_ E, and F) the

assumption has been made that koL >> i, which means that the aco_istic

wavelength is small compared with the turbulent eddy size. This is not

too severe a restriction since the scale of atmospheric turbulence is

usually fairly large, of the order of the height above ground. In addi-

tion, however, it was required that the scattering volume have dimensions

large compared to L. This means that propagation distances z should

be large compared to L, the scale of turbulence.

With these restrictions_ then, the transport-diffusion treatment of

propagation in an isotropic turbulent atmosphere can predict the frequency

spectrum and angular distribution of the sound wave fronts in a probabi-

listic sense. The frequency distribution is interpreted as a power spec-

trum and the autocorrelation of the wave form is obtained by Fourier

inversion. Unfortunately the phase information is lost in the analysis.

It is probable that the most significant failing of this work is

its omission of the effects of thermal scattering which must occur when

atmospheric turbulence mixes regions of different temperature. Unfor-

tunately, the measurement of rapid temperature fluctuations in the atmos-

phere is still in a rather rudimentary state.

Massachusetts Institute of Technology,

Cambridge, Mass., March 26, 1958.
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APPENDIX A

RELATION BETWEEN SPECTRUM AND CROSS SECTION

In reference 8, the power spectrum of the acoustic condensation

scattered into the direction {' from n is given by

Io 4
P(_,_) -I_l 2 x(_) 2 : 4_ _'

Poc c8
(fi n')2Un(K,_)2 (A1)

when K = k' - k, _ : _' - _, and I_I is the distance from the scat-

tering region. The symmetrical time transform of { is X(x,_). The

energy contained in a frequency interval dm' and a cone of solid angle

de' is thus

' ' = - ' ) p°c6 c_' (A2)
l p(_,,_ )PoC3d¢ d_' 2l p(_ ,_,

Since by definition of the differential scattering cross section this

must also be loa(k/k')d_', it must follow tkat

= (A3)

W
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APPENDIX B

SPECTRb_,_ FOR ISOTROPIC TURBULENCE
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From equation (8),

_ i 7dx dx'dt dt'eiK(x-x')+i_(t-t')Rij(_,T)(_)_

(BI)

where

and

Now, setting

=£ __,

T = t - t'

Rij(_,T) = _ui(x,t)uj(x',t')>a v

®ij(_,_) _ (U_J)a_ : __k_Zfd_ a_e-_(_ _-_vT (2.) 4 " )_ij(_,T) (B2)

then it must follow by inversion that

Rij(_,0 ) = _e iK'° da@ij(K,a (BS)

where the quantity in brackets is the eli(K) introduced by Batchelor

(ref. 9, equation 2.4.3). Accordingly, using reference 9,

f_ dC,ij(_,a) : ®ij(g)

_ i &_5 f_
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for isotropic turbulence. The association may then be made

_ij(K,_) - i (K25ij- KiKj)w(K,_)
8_K4

(_5)

whence follow s

(l =@nn(_,_) = w(K,_) c°s 2 __

vT 8_K2 2
(26)

where _ is the angle between k and k' Tc seek the scattering per

unit volume and per second, set V = T = i in equation (B6).
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APPENDIX C

COSINE DRIFT COEFFICIENT

W
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Select the direction of k as a polar axis with an azimuthal

angle _ and a polar angle 8 with respect to the z-axis. The polar

and azimuthal angles of k' with respect to k are _ and _, respec-

tively. Using the identity

cos 8' _ cos 0 cos_ + sin¢ sin e oos(_- _) (Cl)

the integral can be written as

c

sin 0 cos(_ - _)> (C2)

where x : sin _/2. _e reader s_ould consult Lighthill (ref. 7) for a
discussion of the integral over _ or x. For typical spatial turbu-

lence spectra, assuming k/k o >> i_ the exponential diminishes very rapidly;

and the upper limit of integration maY2be allowed to extend to infinity.
The integration over _ becomes -4_x cos 8, and the integration over x

is then

16_k6_ { IO _ dxxSe -Sc_kx_'_ c2

or

32c_
(c3)
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APPENDIX D

COSINE VARIANCE

Using expression (CI) and the spectrum of equation (15), one can

write

2x(lx2)i/2- sin 6 cos(_ - _)2} (DI)

The integral over _ contains 8_x4cos2E and 2_x2(i - x2)sin2e.

The x4 terms may be ignored compared to the x2 terms (since the

interest is in the range x << i) and this yields

or

W
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FREQUENCY DRIFT
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to
From equations (26) and (22), the expression for <0_ is P:":-P_:rt b:n;_.!

where x = sin(@/2) and _' = _/<_. The branch points of tile intecra!,d
are located at

4x 2 ± n_16x4 _ 16x 2

Pl -
?

2 2

e-+i¢/2 (S2)

since the scattering angle is small. This makes <0)_

f__/__+_1-_-_ _' e p dp

proportional to

(E3)

which must vanish. Hence _o\ _ 0.
Y/ C
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APPENDIX F

FREQUENCY VARIANCE

AGain, from equations (22) and (29), _2>a can be expressed as

<_)_____i__,<__x_>(___x_>_o-_/_(_+_o_i-<--_o_
c d 0

(Fi)

To evaluate this, calculate

oo

_ _0o_2°2(_2+_202)-l
o0

where o2 = euk/x. The integrand diminishes with p under the primary

influence of the denominator. Thus the exporential is treated as a

perturbation on this and written as follows

-a2P 2 o2p2 "

i + _2p2

assuming convergence for large p. Thus it is that one integral takes
the form

l oo dp

[ _/;-_ _e _j+d _2

W
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NOW

p2dp h2 + _2p2 = dq2 (_ + ah) 2_ 2

if it is assumed that _-->> s. Thus, putting this result into the

integration over x, the result becomes
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°2)_ 4_2o_k 7 i

192 c

(F_)
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